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Abstract 

Equations relating the first and second partial 
derivatives of the lattice energy (with respect to the 
unit-cell constants) to the components of the elastic 
stiffness tensor have been obtained for orthorhombic 
crystals. By assuming a Born-Mayer model for the 
lattice energy, and using Ewald's method for calculat- 
ing the electrostatic term, formulas are derived for the 
computation of the lattice-energy derivatives. In these 
expressions, the repulsive coefficients and the atomic 
charges appear as unknown parameters which can be 
determined by solving the above equations, provided 
that experimental data about elasticity and thermal- 
expansion tensors are available. 

Introduction 

According to the most widely used model for ionic 
solids (Born & Mayer, 1932; Tosi, 1964), three terms 
(electrostatic, repulsive and dispersive) contribute to the 
lattice energy of a unit cell; each one of them in its turn 
is the sum of two-body contributions: 
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e is the electron charge, N is the number of ions in the 
cell, z~ is an ionic charge referred to the electron charge, 
x u is an interatomic vector between the ith and jth ions 
contained in the unit cell, l is a vector of the direct 
lattice; d/j and qu are the dipole-dipole and dipole- 
quadrupole coefficients of the van der Waals energy, 
and can be calculated by the London and Mayer 
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formulas, respectively, provided that ion polariz- 
abilities and average excitation energies are known 
(Tosi, 1964). If a fully ionized model is assumed, the 
electrostatic and dispersive terms can be computed ab 
initio. This is not the case, however, for the repulsive 
term, since the repulsion coefficients b U and the 
'hardness parameter' p cannot be calculated directly 
from any experimental quantities; they must then be 
considered as unknown parameters of the energy and 
are determined by a semi-empirical fitting to the elastic 
properties of the crystal. In the classic Born-Mayer 
approach, only cubic crystals are considered, so that 
the energetics of the elastic behaviour is accounted for 
satisfactorily by the derivatives of the molar internal 
energy E with respect to the molar volume v: 

( ~3-~v ) = - p  + T a 
r f l '  

(2) 

(3) 

where a is the volume thermal expansivity, fl is the 
isothermal compressibility, p and T are pressure and 
temperature. In the Hildebrand approximation, 
derivatives of the internal energy and of the lattice 
energy are equal; it is then simple to differentiate (1) 
with respect to the volume (or to the cell constant), to 
substitute the results into (2) and (3) and to solve the 
two equations which are obtained with respect to the 
unknown repulsive parameters. The real problem is to 
get a sufficient number of equations, from different 
crystals, for a given number of ion-ion parameters 
which must be determined (Catti, 1979). 

However, if crystals with symmetry lower than cubic 
are considered, the anisotropic character of their elastic 
properties must be taken into account, so that (2) and 
(3) are no more adequate. This may be an advantage in 
some respects because more unknown parameters (e.g. 
the ionic charges) can be introduced into (1), provided 
that a higher number of equations is available. The 
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objective of this work is to propose an extension of the 
Born-Mayer parametrization of the lattice energy to 
low-symmetry crystals, developing detailed calculations 
for the orthorhombic case. 

Internal energy and elastic properties 

In the general case of a triclinic crystal on which an 
anisotropic stress is applied, the internal energy change 
caused by the induced strain is expressed by the 
following equation (Nye, 1960; Wallace, 1972): 

= v r l j -  vT  ~- vT  ~. ~, apq, (4) 
T,c' ~k c3T ] t Cupq p = l q = l  

where Qj, rig, (Ipq a re  components of the symmetrical 
second rank tensors of linear Lagrangian strain, of 
stress and of thermal expansion, respectively, e' means 
all tensor components different from those under the 
differential sign; Cijpq = (t~Tij/t~epq) T.c' is a component of 
the fourth-rank tensor of the isothermal elastic stiff- 
ness. For pressures which are not very high, vr U can be 
neglected with respect to vT(c3ro/ST),:. To obtain the 
second partial derivatives of the energy, let us differenti- 
ate (4) with respect to e~: 
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Since there are six independent strain-tensor compo- 
nents eij, there are also six equations of type (4) for the 
first derivatives of the energy, and 21 equations of type 
(5) for the second derivatives. These equations are the 
generalization of (2) and (3). 

It is not simple, however, to express explicitly the 
dependence of the lattice energy (1) on the strain-tensor 
components; the derivatives of the lattice energy with 
respect to the cell constants can be calculated much 

more easily, so that their relationships with the 
derivatives in (4) and (5) must be considered: 
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Expressions relating the strain-tensor components e U to 
the cell constants a k (k  = 1, . . . ,  6) have been worked 
out for monoclinic symmetry (Morimoto & Tokonami, 
1969) and for the general case of triclinic symmetry 
(Ohashi & Burnham, 1973; Schlenker, Gibbs & Boisen, 
1978). In the orthorhombic case e U = (ai/ao, i -  1) ~o, 
where Ju is the Kronecker symbol and a0,; is the 
equilibrium ith cell constant (a0.~ = a, a0a = b, a0,3 = C); 

by differentiating, we have t3e,/Sa k = a -I 6~k, and all 0,k 
second derivatives are equal to zero. Since the 
derivatives in (6) and (7) must be calculated for a k = 
a0,,, for simplicity the symbol a k will be used to mean 
the equilibrium value a0.k of the cell constant at 
temperature T. By substituting the derivatives of the 
strain-tensor components and the derivatives of the 
energy (4) and (5) into (6) and (7), and taking into 
account that a pq = a qq J~,  a set of nine independent 
equations is obtained: 
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By extending the Hildebrand approximation (Tosi, 
1964) to the case of anisotroptc strain, the vibrational 
part of the internal energy can be assumed not to be 
affected by the isothermal strain, so that (c3E/c3eu)T,,:, = 
(SEt/c~eii)r.~,, and the internal energy E can be 
substituted by the lattice energy E L in all the foregoing 
derivatives. Then the nine equations (8) and (9) relate 
derivatives which can be calculated from the theoretical 
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expression (1) to experimental quantities. Since 
adiabatic rather than isothermal elastic constants are 
usually reported in the literature, the relative con- 
version must be performed using the equation (Wallace, 
1972) 

S SIjkm : SUkm "t'- Otlj Ctkm - -  
v T  

, (11) 
G 

where Sijkm and s suk m are the isothermal and adiabatic 
elastic compliances, which are related to the 
corresponding stiffnesses by expressions such as 

to show that the lattice energy of a mole of crystalline 
substance can be written as" 
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Y E su~ c,qkm = ½(6., 6..  + 6,,, 6p; 
r = l q = l  

Cp is the heat capacity at constant pressure. The term 
T(cOCkkmm/C~T) e which appears in (9) is very small with 
respect to Ckkmm; neglecting it would cause a small but 
appreciable error. To calculate that term, (10) must be 
used: however, the derivatives (6qCkkmm/6qrU)r, ~, are 
usually not known, while the value of (~gcu,,,m/Op) r, 
measured by applying an isotropic pressure, is generally 
available. Then, by taking into account the relation 

( ~Ckkmra I : _ _ L l ~ C k k m m ~  

¢~P IT r = l  ~ arr-~--]r,/ 
(12) 

where n is the number of ions in the asymmetric unit. 
DD DQ The coefficients C,.~, Cr~ , C,. s are expressed by the 

same formulas [(9) and (10) in Catti's (1978) paper] 
which hold for Ceris, provided that the factor e 2 is 
omitted; the functions F(x) in the three cases are, 
respectively, 
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and 

the following approximation can be introduced: 
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then (10) is substituted by the approximate expression: 
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which is to be inserted into (9). The right-hand 
members of (8) and (9) can then be calculated, provided 
that the single-crystal thermal-expansion coefficients, 
the elastic constants and their temperature and pressure 
derivatives are available. 

T h e  latt ice  energy  der ivat ives  

Following the same demonstration used in a previous 
paper (Catti, 1978) for the electrostatic term, it is easy 

+OI9 

FDo(x ) : -  ~ t l x  + II -s 
--OO 

In (15) the only quantities which depend on the unit-cell 
1,o C f ~ ,  so constants are the coefficients C~,  C~,  Crs ,  

that the first derivatives of the lattice energy are 
expressed as follows: 

: Z r Z ~ l ~ !  + b ~ \  Oak /~' 
\--~ak /a' r= 1 s=~ \ Oak 1~' ~= 1 s=r 

,'=l ~=," ,"' = ~=,. \ Oak ]a' 
(16) 

analogous expressions hold for the second derivatives. 
In order to calculate the derivatives of the C,s 
coefficients, the four functions F(x) must be differen- 
tiated with respect to the cell constants; these derivatives 
will be reported for crystals with orthorhombic 
symmetry. 

In the case of the electrostatic term, the function F(x) 
is expressed by Ewald series as reported by equation (3) 
of Catti (1978); its derivatives are 
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Oa-----k]',, nyak - h[  a~ -~-+~-S -- 1 -~- 

x exp A ~ cos (2rch.x) 

+~o (x k + li,)2 I erfc(AIx + II) 

- - a k Z ,  I x + l i  ~ [ I x + l l  
- -0(3 

+ - ~  exp (-A21x + II e) ; (17) 

+~ ( (02Fe' t 4 ~ ' h [ 2 h ~  1 Zt212 

]1 
a~ -~ + A 2] a---~k h----g+ 1 --~ 

x exp - - - ~ ]  cos (2~h.x) 

+ a~ Z !  (Xk + lk) 2 3(X k + Ik) 2 1 

- - 0 0  

erfc(A Ix + II) 2A [3(x  k + lk) 2 
× ~- 

t l] 
+2A~(xk+lk)2 a~ 

x exp(--A21x + !12)/; (18) 
/ 

O-a-kk -~am]a, ztVa k am _ 'h [ a~ aZ,,, + -~1 

4h~h2m 1 ] 1 ( n2h2 t 
- -  + 1 exp - ~  

2 h 4 -~-  A2 ] + a~ a m 
× cos (2nh.x) 

+~ (X k + lk) 2 (Xm + Ira) 2 
+ a k a m Z ,  i x - ~ ]  

- - 0 0  

[ 3erfc(A Ix + I1) 
x [ I x + l l  

2A 
+ V' ~ (2A21x + !12 +] 3) 

× exp(--A21x + 112)|. (19) 
] 

V is the volume of a unit cell, h is a vector of the 
reciprocal lattice, erfcO') = 2/V/~ f+~ exp ( - t  2) dt is the 
complementary error function, ~ '  is a sum over 
noncentrosymmetric lattice vectors only, excluding the 
zero vector; A is the arbitrary parameter which 
conditions the relative convergence rates of the two 
partial series (Catti, 1978). 

The partial derivatives of the functions F R (x), Fob (x) 
and Foe(x) with respect to the cell parameters are 

Oa-----kk/" ,, p _ ' ~X+i~ exp P ; 

(20) ( 02FRI a~ *~ (xk + lk)2 [ (Xk + lk) z 

0a ,lo=p ' --OG 

+ (x k +p lk) 2 I Xa~, + II ] 

xexp  - - ~  ; (21) 
P 

( 02FR ) akam+~ (Xk+lk)2(Xm +[m)2_ .  
O--~i, -O-a, n ",, p Z, ix + ii ;  

--0(3 

x . - - + -  exp - .(22) 
I x + l l  p p 

( t +~ (Xk+lk)2 OFDD = 6a k • (23) 
\ Oak/,,' ' ]x+i~ ~ ' 

--0(3 

---~ak~ ] ' , ,=  48a~ t Ix + II lO 
--OO 

1 i x + l l 2  
x (xk + lk)2 8a~ (24) 

( 1 +~ (Xk+lk)2(Xm+lm)2 (25) 0 z Fm~ = 48a k a m 
Oa k Oam]a, I IX + !110 

--QO 

OF°e = (Xk + Ik)2 (26) 
\ -~ak/ ' , ,  - -8ak I Ix+I l l °  ; 

--¢X) 

OZF°Q] = 80a~, (Xk + lk)z 

- - 0 0  

I x + l l 2 ] .  
?~-~ , (27) 

( 02FDe ) +~ = 8Oak am ZI (xk + lk)2 (xm + Ira)2 
Oak Oam a' -~ I X + !1 z2 

(28) 



76 A GENERALIZED BORN-MAYER PARAMETRIZATION OF THE LATTICE ENERGY 

Conclusions 

In the case of an orthorhombic crystal, the first and 
second partial derivatives of the lattice energy with 
respect to the cell parameters can be calculated by 
expressions like (16), where the repulsive coefficients brs 
and some of the charges z r are considered as unknown 
parameters. By substituting the results into (8) and (9) a 
set of nine equations is obtained, which can be solved to 
determine up to nine wanted parameters. 

A computer program (in Fortran IV) has been 
written to perform the calculations of the lattice-energy 
derivatives, using formulas (16)-(28)" the computing 
scheme follows that of MADEWA,  a program which 
calculates the electrostatic term of the lattice ene.rgy by 
Ewald series (Catti, 1978). The method developed here 
has been applied to forsterite, Mg2SiO 4, assuming as 
unknown parameters in the lattice-energy expression 
three repulsive coefficients plus the electric charge on 
the oxygen atom (Catti, 1981); the overdetermined 
system of nine equations has been solved by a numeric 
procedure of minimization of the sum of squared 
deviations. The convergence rates of the series (17)- 

(28) have proved to be comparable with those of the 
corresponding integral series F(x): as for the derivatives 
of the Ewald double sum, satisfactory results have been 
obtained using the same values of the parameter A 
which optimize the convergence of the Ewald series 
itself. 
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Abstract Introduction 

Two algorithms for the evaluation of even moments of 
the trigonometric structure factor are described. The 
first algorithm is based on conventional structure-factor 
algebra in the complex notation and is applicable to 
any space group with multiplicity of general positions 
not exceeding 24. The second algorithm, capable of 
dealing with all space groups, involves an interpretation 
of trigonometrical expressions input in a symbolic form 
and a programmed execution of algebraic and analytic 
operations. The results obtained in this study include the 
fourth and sixth moments of the trigonometric struc- 
ture factor for all 230 space groups. It is assumed that 
all the atoms occupy general positions. All the subsets 
of hkl indices giving rise to different forms of the 
trigonometric structure factor (except those for zones 
and rows) are considered. 
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Probability density functions of the structure amplitude 
IF I, which depend explicitly on the space-group 
symmetry and on the atomic composition of the 
asymmetric unit, were given by Karle & Hauptman 
(1953) and by Hauptman & Karle (1953) for centro- 
symmetric and non-centrosymmetric crystals respec- 
tively. Possible applications of these functions, which 
are asymptotic expansions in terms of the Wilson 
(1949) limiting distributions, to direct methods of phase 
determination have been discussed (Bertaut, 1955; 
Klug, 1958) and their application to intensity statistics 
investigated (Shmueli, 1979; Shmueli & Wilson, 1981). 
An obstacle that hindered an extensive application of 
these asymptotic expansions was, until recently, the 
necessity of obtaining the moments of the trigonometric 
structure factor for each space group considered. These 
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